Global Optimality Conditions for Optimization Problems∗

نویسنده

  • Zhiyou Wu
چکیده

We establish new necessary and sufficient optimality conditions for optimization problems. In particular, we establish tractable optimality conditions for the problems of minimizing a weakly convex or concave function subject to standard constraints, such as box constraints, binary constraints, and simplex constraints. Our main theoretical tool for establishing these optimality conditions is abstract convexity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sufficient global optimality conditions for general mixed integer nonlinear programming problems

‎In this paper‎, ‎some KKT type sufficient global optimality conditions‎ ‎for general mixed integer nonlinear programming problems with‎ ‎equality and inequality constraints (MINPP) are established‎. ‎We achieve‎ ‎this by employing a Lagrange function for MINPP‎. ‎In addition‎, ‎verifiable sufficient global optimality conditions for general mixed‎ ‎integer quadratic programming problems are der...

متن کامل

Optimality conditions for approximate solutions of vector optimization problems with variable ordering structures

‎We consider nonconvex vector optimization problems with variable ordering structures in Banach spaces‎. ‎Under certain boundedness and continuity properties we present necessary conditions for approximate solutions of these problems‎. ‎Using a generic approach to subdifferentials we derive necessary conditions for approximate minimizers and approximately minimal solutions of vector optimizatio...

متن کامل

Unified global optimality conditions for smooth minimization problems with mixed variables

In this paper we establish necessary as well as sufficient conditions for a given feasible point to be a global minimizer of smooth minimization problems with mixed variables. These problems, for instance, cover box constrained smooth minimization problems and bivalent optimization problems. In particular, our results provide necessary global optimality conditions for difference convex minimiza...

متن کامل

Optimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone

In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.

متن کامل

Regularity Conditions for Non-Differentiable Infinite Programming Problems using Michel-Penot Subdifferential

In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are locally Lipschitz‎. ‎Necessary optimality conditions and regularity conditions are given‎. ‎Our approach are based on the Michel-Penot subdifferential.

متن کامل

Characterizing global optimality for DC optimization problems under convex inequality constraints

Characterizations of global optimality are given for general difference convex (DC) optimization problems involving convex inequality constraints. These results are obtained in terms of E-subdifferentials of the objective and constraint functions and do not require any regularity condition. An extension of Farkas’ lemma is obtained for inequality systems involving convex functions and is used t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008